

​
​
Smartling API
Integrations:​
Best practices and
considerations

The purpose of this document is to provide a comprehensive guide to best practices and key

considerations for designing API integrations. It should be referenced throughout the design

and development process to help you design reliable, scalable, and maintainable solutions.

Table of Contents

File Considerations
File Type(s)
File Naming Conventions
File Contents

HTML Content
Sample JSON File structure

Content Parsing
Directives
Notranslate Fields
Placeholders

Custom placeholders
Namepaces & Variants

Approaches to Namespaces
Namespace Approach 1: Namespaces for each unique asset
Namespace Approach 2: Files based
No namespaces (not recommended)

Variants
API Flow

Job Batches
Strings API + Jobs

Translation Request Process
Smartling Job Creation
Authorization
Related and Child assets

Translation Download Process
Content updates
Context

Smartling Context API
Smartling Context Javascript Library

Other Considerations
Locale Mapping
Smartling Workflow

Error Handling
Logging

smartling.com

2

Advanced Features
Show Translation Progress Status
Multiple Projects
Configurable Directives

Third Party Integration Features
User Agent

smartling.com

3

File Considerations

File Type(s)
Smartling supports many file types. Some integrations will naturally lead toward one file type or
another based on the options readily available in the platform. If creating the files from scratch
or given the choice, we recommend using JSON file type as it provides the most flexibility with
supported directives.

File Naming Conventions
File names (fileUri) in Smartling are searchable, so it is important to define a naming convention
that will easily enable users to find content in Smartling.

File names should include

●​ User friendly name for the asset (may need to be trimmed). This could be the title of the
asset or other attribute that is visible to the end user.

●​ (optionally) an asset type
●​ Unique identifier for the asset

Example: The Best Surfboard-PRODUCT-123563.json

For platforms that use a path or tree structure:

●​ Asset path (may need to be trimmed)
●​ Asset ID

Example: <branchName>/content/markening_site/product/features/en.json
In these types of structures the asset itself is often not unique, so including the entire path
ensures uniqueness. It’s also important to ensure that if trimming of the path does occur that it
doesn’t remove the most relevant part of the path (i.e. the file/asset name).

For this structure, consider how namespaces should be determined. For example, if string
sharing is desired for the same file in different branches or other variable part of the file uri. See
Namespaces for Path based structures for additional details.

Keep in mind:

●​ Maximum fileUri is 512 characters. Some parts may need to be trimmed especially if the
file path is part of the fileUri

●​ All UTF-8 characters are supported, including extended unicode symbols and emojis
●​ fileUri values are case-insensitive

smartling.com

4

https://help.smartling.com/hc/en-us/articles/360007998893--Supported-File-Types
https://help.smartling.com/hc/en-us/articles/360008000733-JSON

File Contents
As a best practice Smartling recommends sending the entire set of keys for an asset every
time that translation is requested as opposed to only sending changed or updated content
(i.e. delta content). Smartling will detect if strings have changed or are new. Anything strings
that are unchanged will remain unaffected in the platform. This approach allows for better
tracking of strings in the platform.
Otherwise, if delta files are sent they need to be uniquely named so as to not remove strings
that were previously sent for translation. This makes it difficult to track changes to existing
strings, instead creating multiple copies.

HTML Content
We recommend the integration provide a way to identify which strings/keys contain HTML
content. Smarting will parse these strings as HTML, breaking them into smaller translation units
which allows for better TM leverage. When sending the content to Smartling use the
strings_format_paths directive to identify keys containing HTML.

Sample JSON File structure
Provided below is a sample JSON file structure. While Smartling is very flexible and can
accommodate a wide variety of file structures, formatting the file in specific ways can make it
easier to identify which keys need to be translated and other parsing requirements.

{

 "smartling": {

 "variants_enabled": "true",

 "translate_paths": [

 {

 "path": "/values/*/text",

 "key": "/values/*/variant",

 "instruction": "/*/instruction",

 "character_limit": "/*/character_limit"

 }

],

 "string_format_paths": "html: [values/htmlValue], txt: [values/textValue]"

 },

 "values": [

 {

 "key": "store.checkout.key1",

 "textValue": {

smartling.com

5

https://help.smartling.com/hc/en-us/articles/360008000733-JSON#HTML

 "text": "A discount has been applied to this order. You can’t add

another discount.",

 "variant": "store.checkout.key1",

 "instruction": "these are the instructions",

 "character_limit": 50

 }

 },

 {

 "htmlValue": {

 "text": "<p><strong style=\"text-transform:uppercase\">%{code}

discount code isn’t valid for the items in your cart</p><p>Please enter a new

code</p>",

 "variant": "store.checkout.key2",

 "instruction": "these are some other instructions",

 "character_limit": 100

 },

 "key": "sotre.checkout.key2"

 }

]

}

Directives used for this example. These directives can either be specified inline (most
directives) as shown in the sample above. Alternatively, they can be specified through the API.
See documentation for details on each directive. Note, the directives shown here are specific to
JSON. Similar directives are available for some (but not all) other file types.

●​ string_format_paths: "html: [values/htmlValue], txt: [values/textValue]"
○​ Tells Smarting which paths should be parsed as which format. Useful for

enabling HTML parsing.
●​ translate_paths:

"[{\"path\":\"/values/*/text\",\"key\":\"/values/*/variant\",\"instruction\":\"/*/instruction\",\"char
acter_limit\":\"/*/character_limit\"}]"

○​ Gives the path to the translatable strings, keys, and instructions
○​ Optionally, you can specify a character limit

●​ variants_enabled: "true"
○​ Determines whether variants are used

●​ namespace
○​ This directive can only be set through the API

smartling.com

6

https://help.smartling.com/hc/en-us/articles/360008000733-JSON#Directives
https://help.smartling.com/hc/en-us/articles/360008000733-JSON#Changehowstringsareparsed
https://help.smartling.com/hc/en-us/articles/360008000733-JSON#PathToTranslatableStrings,Instructions,andKeys
https://help.smartling.com/hc/en-us/articles/360008000733-JSON#CharacterLimits
https://help.smartling.com/hc/en-us/articles/360008000733-JSON#variants-enabled

○​ See Namespaces and Variants section for further details.

Content Parsing

Directives
Content parsing in Smartling is controlled using directives. Specific directives are noted
throughout this document. The directives that are available are based on the specific file type
used for the integration.

Notranslate Fields
A common use case for an API integration is that certain fields in the source system should not
be translated and therefore not sent to Smartling.

The integration must take into account:

●​ Fields/attributes that should never be translated.
○​ Example: Fields that contain urls, fields that contain image names, fields that

contain ids, etc.
●​ Fields/attributes that the user should be allowed to configure whether they should be

translated
○​ The integration should provide a way for the user to identify fields that should be

excluded from translation. For example, a freeform text area.

Fields that should not be translated can either:

1.​ Recommended: Included in the file sent to Smartling but with a path that is different from
what is looked for in the translate_paths directive. Therefore, the strings will not be
ingested.

2.​ Not be included in the files sent to Smartling.
3.​ In the case of HTML content, notranslate tags can be used.

Placeholders
Another common use case is when a string that should not be translated is embedded in a
larger string which does require translation. This is common when a variable is used in part of a
larger string.
In this case there are two ways to handle:

1)​ Non-programatically through Glossary entries. This fits some use cases where the set
of phrases not to translate are well known and can be clearly defined. While this
approach does not require any development effort, it is not a good fit for all use cases.

smartling.com

7

https://help.smartling.com/hc/en-us/articles/360007998893--Supported-File-Types
https://help.smartling.com/hc/en-us/articles/360007894614-HTML#ExcludeContentfromTranslation
https://help.smartling.com/hc/en-us/articles/115004844973--Introduction-to-the-Glossary

This can be useful when end users are generating the content and may not be able to
always identify which content in the string should not be translated. For example,
someone is composing a description of a restaurant, “Welcome to Restaurant ABC….”.
The name of the restaurant should not be translated but it’s contained in a larger block of
text. In this case glossary entries may be a good approach.

2)​ By using placeholders. This is required for cases where variables are being used.

Examples:

Source String Example Placeholder String

You will love Product A You will love {{productName}}

You will love Product B

Buy 2 more to receive $100 off Buy {{number}} more to receive {{amount}} off

Buy 1 more to receive $50 off

An added benefit of using placeholders is that it can reduce the amount of strings requiring
translation by collapsing multiple strings into a single string.

The integration should consider the data that is sent for translation.

●​ Where should placeholders be included?
●​ Is there a need to allow the content creator to specify when to use placeholders? How

can this be achieved technically?
●​ What placeholder format(s) will be used?

Refer to file type documentation for information on what placeholder formats are supported
OOTB for each file type.

Custom placeholders
Sometimes there is a need for the integration to allow a configuration option for custom
placeholders. This is typically a plain text field where an admin can enter the custom
placeholder format. This would provide the ability to allow for custom placeholder format(s) that
could be easily modified based on business requirements. These should be sent to Smartling
using the custom placeholder directive.

smartling.com

8

https://help.smartling.com/hc/en-us/articles/360008143433-Placeholders-in-Resource-Files
https://help.smartling.com/hc/en-us/articles/360007998893--Supported-File-Types
https://help.smartling.com/hc/en-us/articles/360008000733-JSON#placeholder-format-custom

Keep in mind that for the JSON file format, adding a custom placeholder format will override the
OOTB placeholder formats. Therefore, to support both the custom placeholder format
expression must be inclusive of any needed OOTB formats as well.

Namespaces & Variants
Smartling has a concept of string sharing where strings with the same text within the same
namespace share a translation.

You can think of a Namespace as a container of strings. Using the API, you can define different
namespaces (containers) of strings. By default, the fileUri is the namespace if none is specified.

String Variants are an additional optional feature that can be used that allows for different
translations of the same source text. Namespaces can be used with or without variants
enabled.

At a high level, namespaces control separation of strings at the namespace level, while variants
allow for separation of strings within a namespace.

 No Variants​ ​ ​ ​ ​ With Variants​ ​ ​

It is important to note that the Smartmatch feature can be used across namespaces and
variants, still allowing translations to be reused.

smartling.com

9

https://help.smartling.com/hc/en-us/articles/360008000733-JSON#PlaceholderFormat
https://help.smartling.com/hc/en-us/articles/12479722257563-Namespaces
https://help.smartling.com/hc/en-us/articles/360008143833-String-Sharing-and-Namespaces-via-Smartling-API
https://help.smartling.com/hc/en-us/articles/360008143853-Strings-Variants
https://help.smartling.com/hc/en-us/articles/30762093412123-SmartMatch-Rules

Approaches to Namespaces
Decisions around file naming conventions and namespace creation are often closely tied
together. To make this decision, the underlying data structure of the CMS should be
considered. There are two general approaches that Smartling recommends:

Namespace Approach 1: Namespaces for each unique asset

This approach generally works best for systems that store strings in assets that can be uniquely
identified with an id. A namespace is created for each unique asset and includes the ID of that
asset. Do not include user supplied attributes or attributes that could change over time, such as
a name or title.

Each namespace can be assigned to one or more files.

Examples: PRODUCT_123, PRODUCT_456, PAGE_789, PAGE_1011

Namespace Approach 2: Files based

This approach generally works best for systems that store strings in path based assets. These
systems often contain branches or other unique identifiers to distinguish versioning between
assets.
When using the file path as part of the fileUri naming convention, it is typically recommended to
remove the branch (or other versioning identifier) from the path when specifying the
namespace.

Consider the following example where two versions of a file exist in different branches:

smartling.com

10

<branch123>/content/markening_site/product/features/en.json
<branch456>/content/markening_site/product/features/en.json

In this case, it is recommended to share strings between both versions of the file. The
namespace could be set to exclude the specific branch:
/content/markening_site/product/features/en.json

Smartling uses this convention in the GitHub connector. You can see another example here.

No namespaces (not recommended)

In this approach, all strings are shared across all files. This approach is not recommended as
it does not allow adequate separation of strings to be translated differently depending on the
context. This is included here as a warning.

smartling.com

11

https://help.smartling.com/hc/en-us/articles/360008152513-GitHub-Connector-Overview#FileURIvsNamespace

Variants
If the source content has keys, these are often used as string variants. Variants should be
enabled when there is a need to separate translations for the same string within a file. Variants
can be used with or without namespaces. An additional benefit is that keys/variants are
searchable in Smartling

Variants should not be used in the place of string instructions for the translator. Instead use
string instructions for this purpose.

smartling.com

12

https://help.smartling.com/hc/en-us/articles/360008143853-Strings-Variants

API Flow
Smartling offers multiple APIs which can be used to get strings into Smartling for translation.

Job Batches
As a general best practice, we recommend the Job batches API flow for the majority of
integration use cases. Job Batches take care of asynchronous processes when uploading files
and attaching them to jobs.

An alternative approach is using the Files API plus the Jobs API without Job Batches. In this
approach, adding multiple files to a job requires polling at each step. The file is parsed
asynchronously and can't be added to a job until it is completed. Adding a file to a job is also
asynchronous, and the job can't be authorized until all background tasks are completed.
This forces a third-party integration poll for every file after every step.

Job Batches hide these asynchronous processes from 3rd party integration. After it accepts the
file, it processes this file through all steps up to the Job authorization. As the Job Batches
Service utilizes internal Smartling events it is more efficient than just polling files and jobs.

You can find a sample postman collection here.

Strings API + Jobs
It is also possible to upload strings directly into Smartling using the Strings API and then add
them to a job. While this approach is possible, for the majority of use cases the job batches API
flow outlined above is a better fit and considered a best practice. One exception is if the strings
are being stored in a database. In this case, it may not make sense to try to structure the
strings into a file.

The Strings API has several limitations including:

●​ Limited directive support in the Strings API
○​ As an example, you cannot control entity escaping if a string is parsed as HTML
○​ ICU format is not supported

●​ The Strings API does not allow content to be easily managed in the dashboard
because strings are not tied together as they are in a file

○​ No guarantee of ordering of strings
○​ No ability to easily download from the dashboard since they do not live in a file

●​ No way to delete or modify strings if the source content changes
●​ Job batches API has better performance and doesn't require polling before adding

strings to a job
●​ No ability to include additional metadata with strings API as you can in a file

smartling.com

13

https://help.smartling.com/hc/en-us/articles/1260804711510-Tutorial-Translation-Jobs-and-Workflows
https://api-reference.smartling.com/#tag/Files
https://api-reference.smartling.com/#tag/Jobs
https://help.smartling.com/hc/en-us/articles/41701692432667-Job-Batches-V2-API-Postman-Collection
https://api-reference.smartling.com/#tag/Strings

○​ When the file is used as context, inline comments and metadata can serve as
additional context

●​ Callbacks are supported, a separate callback will be generated for each string unless
job level callbacks are used. Therefore, the frequency will be increased.

●​ File rewrites are not supported since there is no file

Translation Request Process
The integration should carefully consider: What triggers content to be sent to Smartling for
translation?

●​ Is this automated or manually requested by the user?
●​ If Automated:

○​ Consider how to ensure content is “complete” before triggering translation.
○​ Consider having a manual override mechanism to ensure that content can be

requested on demand in case of an urgent request or issue resolution.
●​ If Manual:

○​ Consider what the UI looks like for requesting translation.
○​ What should the user be allowed to override?
○​ Should a user be allowed to add content to an existing job?

UI Example - Create New Job

smartling.com

14

smartling.com

15

UI Example - Add to Existing Job

smartling.com

16

Smartling Job Creation
The integration should consider how and when Smartling jobs will be created.

●​ If using the manual option for Translation Request process above: Typically the users
are allowed to indicate a job name.

○​ Determine if there’s a need for users to add content to an existing job
●​ If using the automated translation request process: consider how frequently jobs should

be created in Smartling.
○​ “Real time” - depending on expected volume this could result in a lot of small

batches. Alternatively, you can add new content to an existing job for a given
timeframe (i.e. Daily job).

○​ Batched / schedule (what’s the schedule and how can it be changed or
overridden)

●​ The only requirement is that job names must be unique in Smartling.
○​ If the user tries to indicate a job name that is not unique an error message should

be displayed to the user.
○​ If jobs are created automatically define a naming convention that will result in

unique job names.

Authorization
The integration should carefully consider: How should content be authorized in Smartling?

●​ Auto-authorization: Jobs are automatically authorized in Smartling.
○​ This can be done using the authorize parameter on the Create Job Batch API or

the Authorize Job endpoint.
○​ Content will follow the default workflow unless overridden in the API.

●​ Manual authorization
○​ Jobs will be manually reviewed in Smartling prior to authorization.
○​ Users can override the default workflow at the time of authorization.

●​ Allow user to choose
○​ If users are manually requesting content, in the request UI dialog, allow users to

indicate whether the content should be automatically authorized. This is only
applicable for the manual translation request process.

○​ What will the default value be? Is there a configuration option to control the
default?

UI Examples:

smartling.com

17

https://api-reference.smartling.com/#tag/Job-Batches-V2/operation/createJobBatchV2
https://api-reference.smartling.com/#tag/Jobs/operation/authorizeJob

smartling.com

18

Related and Child assets
The integration should consider the entity structure of assets in the system and how assets may
be related to each other.

●​ Child assets: In a hierarchical or path based structure, users may want to submit an
asset and any children of that asset at the same time.

○​ When submitting /content/top_path/page1 allow for
/content/top_path/subfolder/childPage to also be submitted as well.

○​ Consider what the default behavior should be.
○​ Consider how to allow the user to change this behavior as needed

●​ Related assets: Similarly, sometimes assets are related to each other that are required
for the asset to be fully translated. Users may want to submit an asset and any related
assets at the same time without having to individually request related assets.

○​ Consider what the default behavior should be.
○​ Consider how to allow the user to change this behavior as needed

UI Example

smartling.com

19

smartling.com

20

Translation Download Process
The integration should consider:
When should translations be downloaded?

●​ Pending: All saved translations, regardless of where it resides in the workflow
○​ This can be be done only through a polling mechanism and setting retrievalType

to pending on file download
○​ Generally this is not recommended for Production usage as it can download

translations that are incomplete.
●​ Published: (Recommended) Translations that have completed the entire workflow

○​ Can be done through polling or callback
●​ Pre-published: Translations that are not fully published but have been configured for

pre-publishing.
○​ See Prepublishing with File Downloads and Callback on Prepublish for technical

details

smartling.com

21

https://api-reference.smartling.com/#tag/Files/operation/downloadTranslatedFileSingleLocale
https://help.smartling.com/hc/en-us/articles/115003169953-Prepublish-Translations
https://help.smartling.com/hc/en-us/articles/115003169953-Prepublish-Translations#PrepublishingwithFileDownloads(Drag&DropandAPI)
https://help.smartling.com/hc/en-us/articles/115003169953-Prepublish-Translations#CallbackonPrepublish(forconnectororAPI)

○​ This is a good option when you are using a workflow that has human review or
edit steps that can take time but it is important to get some translation available
as soon as possible. In this case, pre-publishing makes a “first draft” of the
translation available as soon as possible while still allowing for the final review to
occur and translation to be updated.

●​ Pseudo: Pseudo translations are simulated translations, useful for testing purposes
○​ This can be be done only through a polling mechanism and and set the

retrievalType to pseudo on file download
●​ Is this a configurable option for the integration? Typical options would be Pending,

Published, and Pseudo. If allowing for pseudo translation, consider where in the UI to
add an option for this, for example on the Request Translation dialog. Pre-publishing is
configured in Smartling.

What triggers translations to download? There are two mechanisms to monitor for translation
status:

●​ Polling: This involved periodically checking Smartling for status updates. You can check
the progress at the job level or at the file level. Generally, we recommend checking
progress at the file level

○​ See Checking File Translation Status for details around options for file level
polling

○​ What schedule will the integration poll Smartling? How will this be
managed/updated? Any override option to force download of a particular asset?

●​ Callbacks: Callbacks allow for a more immediate notification when translations are
ready, as opposed to a time-delay that is introduced with the polling option.

○​ Callbacks can be set at the file and job level. Consider which webhook
notifications your integration needs. We recommend using file level callbacks at
a minimum. This ensures that the integration is notified every time a file is
published or re-published.

○​ While webhooks are retried, consider having a backup polling or manual
download mechanism in case of a failure receiving the webhook.

Content updates
There are two types of content changes the integration should consider.

●​ Changes to source content: When changes occur to the source content, how will the
updated content be resubmitted for translation?

○​ Manually: Content will be manually re-submitted for translation following the
same translation request process as for new content.

smartling.com

22

https://help.smartling.com/hc/en-us/articles/360008144673-Pseudo-Translations
https://api-reference.smartling.com/#tag/Jobs/operation/getJobProgress
https://help.smartling.com/hc/en-us/articles/30121903900571-Checking-File-Translation-Status
https://help.smartling.com/hc/en-us/articles/1260805504109-Webhooks-and-Callbacks
https://help.smartling.com/hc/en-us/articles/1260805504109-Webhooks-and-Callbacks#Configuringwebhooks
https://help.smartling.com/hc/en-us/articles/1260805504109-Webhooks-and-Callbacks#Configuringwebhooks

○​ Automatically: Updated content for assets that have been previously submitted
for translation will automatically be detected and sent to Smartling. The same
considerations discussed in Smartling job creation should be applied.

○​ Smartling recommends sending the entire set of strings when a file is updated.
New or updated strings will automatically be detected. Deleted strings will be
removed.

●​ Changes to translations: Changes to translations after a file has been published can
occur if issues are found with translations that need to be corrected or if a preferred
translation is desired. In these cases, we recommend updating the translation directly in
Smartling rather than in the application. This is a best practice to ensure that it is saved
to the Translation Memory. Additionally, in the future if the same asset is requested
again, any changes made in Smartling will not be overwritten.

○​ To ensure the integration is notified of changes to translations, it is recommended
to implement callbacks as described in the Translation Download process. The
file level callback will trigger when a translation is updated and the file is
re-published.

○​ If the integration uses a polling mechanism only, the only available method is to
monitor the List Recently Published Files endpoint.

Context
Visual Context is an important consideration for the integration especially when humans are
involved in the translation workflow. Visual context provides a visual representation of the
source content to Translators, Editors, and Internal Reviewers as they translate the content.

Consider what the best option for sending visual context to Smartling is. The two main
mechanisms include the Smartling Context API (recommended if possible) and the Smartling
Context Javascript library.

Smartling Context API

The Smartling Context API is the preferred mechanism for integrations to use for Visual Context
when possible. As part of the translation request process, if the platform can generate a
preview or snapshot of the rendered content, it can be sent to Smartling without any additional
user interaction required.

Considerations:

●​ Always upload the file first before uploading the context. Strings must be present in
Smartling before they can be bound to context.

smartling.com

23

https://api-reference.smartling.com/#tag/Files/operation/getRecentlyPublishedFilesList
https://help.smartling.com/hc/en-us/articles/115003141253-Uploading-Visual-Context
https://api-reference.smartling.com/#tag/Context

●​ You can control whether you want to bind the context to specific files, hashcodes
(strings), or jobs. Often it is advisable to limit where the context can be bound to only the
recently uploaded content.

●​ You can override the context for strings already bound older than a specified number of
days.

Smartling Context Javascript Library
For platforms that have a web interface, the Smartling Context Javascript Library can be a
viable, low code option.

Considerations:

●​ The Javascript library is not a fully automated solution. The site still needs to be
browsed to send context to Smartling.

●​ Careful consideration to sensitive or personal data should be used before enabling the
library on a production site. It’s generally advisable to use the library in a lower
environment, however if this does not mirror production it is not always feasible.

Other Considerations

Locale Mapping
Locales in the platform may not match locales in Smartling. Alternatively, clients may wish to
use a different locale in the platform than is used for translation in Smartling. For example, they
may wish to use the 2 letter locale code in the platform (“fr”) and the 4 letter code in Smartling
(“fr-fr”).

The integration should provide a way to map the platform locales to Smartling locales. This
mapping may be prepopulated with default information, but should allow for users to update
based on business needs.

Smartling Workflow
In Smartling a workflow controls the specific translation type and steps that content flows
through. Each Smartling project has a default workflow configured. However, it is common for
specific content to need to be sent to a different workflow.

This can be done either manually or through the API:

●​ Manual option: The user can manually change the workflow in Smartling if they authorize
the job in Smartling. This is part of the authorization dialog.

smartling.com

24

https://help.smartling.com/hc/en-us/articles/360007996553-Smartling-s-Context-Capture-JavaScript-Library
https://help.smartling.com/hc/en-us/articles/360007996553-Smartling-s-Context-Capture-JavaScript-Library#Sensitiveorpersonaldata
https://help.smartling.com/hc/en-us/articles/360049532693-Supported-Languages
https://help.smartling.com/hc/en-us/articles/115003829113--Introduction-to-Workflows

●​ Automatically: The integration can override the workflow for a by using the
localeWorkflows parameter on the Create Job Batch API call.

○​ Consider how you want to allow the user to override the workflow. Is this a UI
option? A backend configuration based on the type of content?

Error Handling
Checking for errors is crucial to a robust integration. It’s important to distinguish which errors
are recoverable and should be retried. See retries for more details.

Take note of the possible success and error codes.

Of particular note, are 429 rate limiting errors. Smartling enforces rate limiting. We recommend
the integration implements an exponential backoff algorithm to retry the API call when a 429
error is encountered.

Logging
The integration should log the following details specific to the Smartling API in addition to any
application-specific error messages

●​ Error type and code: HTTP status code as well as Smartling error code and error key if
available; or the type of network error, such as a timeout.

●​ Error details: Any additional details associated with the error. These can be found in the
HTTP response, or in the exception.

●​ Request & Response details: Details of the request sent that resulted in this error
response: URL, api parameters, and any additional context. Details of the response
received that resulted in the error.

●​ Additional, non-error logging can be helpful here too in order to clarify what was
happening in the application before the error occurred.

●​ Request Tracking ID: Smartling includes a request tracking number in a response
header in the format X-SL-RequestId: 369f4a6e-6f7f-4206-8a20-5485742a1d48. Make
sure to log this ID as it can help Smartling find the request in its logs.

Advanced Features
The following are considered to be features of more advanced integrations.

smartling.com

25

https://api-reference.smartling.com/#tag/Job-Batches-V2/operation/createJobBatchV2
https://help.smartling.com/hc/en-us/articles/1260805178349-Error-Handling
https://help.smartling.com/hc/en-us/articles/1260805178349-Error-Handling#Retries
https://help.smartling.com/hc/en-us/articles/1260805481410-Error-Codes
https://help.smartling.com/hc/en-us/articles/1260805145550-Rate-Limits
https://help.smartling.com/hc/en-us/articles/1260805178349-Error-Handling#Logging

Show Translation Progress Status
It can be very helpful for content owners to have a place where they can view the translation
status for a particular asset. This should include some indicator of which locale(s) were sent for
translation and which were not requested for translation. Additionally, showing a percentage
complete or tool tip indicating the number of words in each status (Awaiting Authorization, In
Progress, Published, Excluded) can be very helpful.

The ability to request translation and download the translation is often included in this dialog.
The Request Translation (or “Send to Smartling”) is a way for the user to trigger the translation
request process. The ability to download translations as a way for the user to force the delivery
of translation even if not yet complete. This download delivers all pending translations.

Examples of UI:

Example 1 -

Example 2 -

smartling.com

26

Example 3 -

Multiple Projects
Occasionally it is necessary to send different sets of content to different Smartling projects.
Here are a few reasons why this may be necessary:

●​ Different source language
●​ Very different types of content (i.e. marketing vs legal) means that different linguistic

assets are required during translation

To support this advanced feature, the integration must have a way to allow the content to be
sent to multiple Smartling projects. This means having the ability for an admin to configure
multiple sets of API credentials and corresponding project IDs and also a way to specify which
project should be used to translate which sets of content.

Project select could be done through the request translation UI or some backend config. In
either case, it’s important to have a default project selected to reduce unnecessary button clicks.

smartling.com

27

Example UI:
Configuration -

Request Translation Dialog -

smartling.com

28

Configurable Directives
Many different file level directives were discussed in the Content Parsing and Placeholders
sections. It is important to consider both standard directives that will be OOTB with the
integration as well as configurable directives that could be changed as needed.

Common cases for configurable directives:

●​ The most common use case for configurable directives is the ability to add custom
placeholders. It is important to note which placeholder formats are included by default
based on the file type the integration is using. See details for each file format for OOTB
placeholders as well as the syntax for custom placeholders. For some file file formats,
such as JSON, adding a custom placeholder format will override the OOTB placeholder

smartling.com

29

https://help.smartling.com/hc/en-us/articles/360008143433-Placeholders-in-Resource-Files#SpecifyingStandardandCustomFormats
https://help.smartling.com/hc/en-us/articles/360008143433-Placeholders-in-Resource-Files#SpecifyingStandardandCustomFormats
https://help.smartling.com/hc/en-us/articles/360007998893--Supported-File-Types

formats. Therefore, to support both the custom placeholder format expression must be
inclusive of any needed OOTB formats as well.

●​ Specifying the content parsing strategy for each file type (i.e. plain text, html, icu, etc)

Third Party Integration Features
The following features are applicable to Smartling partners building their own integrations.

User Agent

The User Agent header is used to identify each integration and allows Smartling to track
integration usage across clients. It is highly recommended that the integration include this
header in all API requests.

Please use the following format for the User-Agent header field:

integration-<integration name>-<integration product> / <version>

Example: integration-Smartling-Braze-integration/1.0

smartling.com

30

	​​Smartling API Integrations:​Best practices and considerations
	
	Table of Contents
	
	File Considerations
	File Type(s)
	File Naming Conventions
	File Contents
	HTML Content

	Sample JSON File structure

	Content Parsing
	Directives
	Notranslate Fields
	Placeholders
	Custom placeholders

	Namespaces & Variants
	Approaches to Namespaces
	Namespace Approach 1: Namespaces for each unique asset
	Namespace Approach 2: Files based
	No namespaces (not recommended)

	
	Variants

	API Flow
	Job Batches
	Strings API + Jobs

	Translation Request Process
	Smartling Job Creation
	Authorization
	Related and Child assets

	Translation Download Process
	Content updates
	Context
	Smartling Context API
	Smartling Context Javascript Library

	Other Considerations
	Locale Mapping
	Smartling Workflow

	Error Handling
	Logging
	Advanced Features
	Show Translation Progress Status
	Multiple Projects
	Configurable Directives

	Third Party Integration Features
	User Agent

